Virtual reality (VR) is a simulated experience that can be similar to or completely different from the real world. Applications of virtual reality include entertainment (e.g. video games) and education (e.g. medical or military training). Other distinct types of VR-style technology include augmented reality and mixed reality, sometimes referred to as extended reality or XR.
Currently, standard virtual reality systems use either virtual reality headsets or multi-projected environments to generate realistic images, sounds and other sensations that simulate a user's physical presence in a virtual environment. A person using virtual reality equipment is able to look around the artificial world, move around in it, and interact with virtual features or items. The effect is commonly created by VR headsets consisting of a head-mounted display with a small screen in front of the eyes, but can also be created through specially designed rooms with multiple large screens. Virtual reality typically incorporates auditory and video feedback, but may also allow other types of sensory and force feedback through haptic technology.
One method by which virtual reality can be realized is simulation-based virtual reality. Driving simulators, for example, give the driver on board the impression of actually driving an actual vehicle by predicting vehicular motion caused by driver input and feeding back corresponding visual, motion and audio cues to the driver.
With avatar image-based virtual reality, people can join the virtual environment in the form of real video as well as an avatar. One can participate in the 3D distributed virtual environment as form of either a conventional avatar or a real video. Users can select their own type of participation based on the system capability.
In projector-based virtual reality, modeling of the real environment plays a vital role in various virtual reality applications, such as robot navigation, construction modeling, and airplane simulation. Image-based virtual reality systems have been gaining popularity in computer graphics and computer vision communities. In generating realistic models, it is essential to accurately register acquired 3D data; usually, a camera is used for modeling small objects at a short distance.
Desktop-based virtual reality involves displaying a 3D virtual world on a regular desktop display without use of any specialized VR positional tracking equipment. Many modern first-person video games can be used as an example, using various triggers, responsive characters, and other such interactive devices to make the user feel as though they are in a virtual world. A common criticism of this form of immersion is that there is no sense of peripheral vision, limiting the user's ability to know what is happening around them.
A head-mounted display (HMD) more fully immerses the user in a virtual world. A virtual reality headset typically includes two small high resolution OLED or LCD monitors which provide separate images for each eye for stereoscopic graphics rendering a 3D virtual world, a binaural audio system, positional and rotational real-time head tracking for six degrees of movement. Options include motion controls with haptic feedback for physically interacting within the virtual world in an intuitive way with little to no abstraction and an omnidirectional treadmill for more freedom of physical movement allowing the user to perform locomotive motion in any direction.
Augmented reality (AR) is a type of virtual reality technology that blends what the user sees in their real surroundings with digital content generated by computer software. The additional software-generated images with the virtual scene typically enhance how the real surroundings look in some way. AR systems layer virtual information over a camera live feed into a headset or smart glasses or through a mobile device giving the user the ability to view three-dimensional images.
Mixed reality (MR) is the merging of the real world and virtual worlds to produce new environments and visualizations where physical and digital objects co-exist and interact in real time.
The Virtual Reality Modelling Language (VRML), first introduced in 1994, was intended for the development of "virtual worlds" without dependency on headsets. The Web3D consortium was subsequently founded in 1997 for the development of industry standards for web-based 3D graphics. The consortium subsequently developed X3D from the VRML framework as an archival, open-source standard for web-based distribution of VR content. WebVR is an experimental JavaScript application programming interface (API) that provides support for various virtual reality devices, such as the HTC Vive, Oculus Rift, Google Cardboard or OSVR, in a web browser.
Paramount for the sensation of immersion into virtual reality are a high frame rate (at least 95 fps), as well as a low latency. Modern virtual reality headset displays are based on technology developed for smartphones including: gyroscopes and motion sensors for tracking head, body, and hand positions; small HD screens for stereoscopic displays; and small, lightweight and fast computer processors.
Independent production of VR images and video has increased alongside the development of affordable omnidirectional cameras, also known as 360-degree cameras or VR cameras, that have the ability to record 360 interactive photography, although at relatively low resolutions or in highly compressed formats for online streaming of 360 video. In contrast, photogrammetry is increasingly used to combine several high-resolution photographs for the creation of detailed 3D objects and environments in VR applications.
To create a feeling of immersion, special output devices are needed to display virtual worlds. Well-known formats include head-mounted displays or the CAVE. In order to convey a spatial impression, two images are generated and displayed from different perspectives (stereo projection). There are different technologies available to bring the respective image to the right eye. A distinction is made between active (e.g. shutter glasses) and passive technologies (e.g. polarizing filters or Infitec).
Special input devices are required for interaction with the virtual world. These include the 3D mouse, the wired glove, motion controllers, and optical tracking sensors. Controllers typically use optical tracking systems (primarily infrared cameras) for location and navigation, so that the user can move freely without wiring. Some input devices provide the user with force feedback to the hands or other parts of the body, so that the human being can orientate himself in the three-dimensional world through haptics and sensor technology as a further sensory sensation and carry out realistic simulations. This allows for the viewer to have a sense of direction in the artificial landscape. Additional haptic feedback can be obtained from omnidirectional treadmills (with which walking in virtual space is controlled by real walking movements) and vibration gloves and suits.
Virtual reality cameras can be used to create VR photography using 360-degree panorama videos. 360-degree camera shots can be mixed with virtual elements to merge reality and fiction through special effects.[citation needed] VR cameras are available in various formats, with varying numbers of lenses installed in the camera.
At Van Zijtveld Consulting we have been working with Virtual Reality for quite some time, for standard software such as Google Earth as well as for process technical installations. By using Virtual Reality you can walk through your building or installation, without even laying a brick.
Based on a 3D model, whether or not created by Van Zijtveld Consulting, we create a virtual environment that allows you to navigate through your building or installation. The experience you gain is unprecedented and allows you to form an image of your building or installation without being physically present.
The developments in the field of Virtual Reality do not stand still. As Van Zijtveld Consulting, we are well aware that this is an emerging market segment that will be used more and more in the future. We see this now on both a small and large scale. We therefore continue to educate ourselves in order to be able to offer you the latest developments. Virtual Reality is already part of our possibilities, but also in a later stage the mixing of reality and Virtual Reality will become part of our services.
If you want to know more about the possibilities we can offer you, please feel free to get in touch with us.
Phone:
+31 (0)6 1023 1659
Industrieweg 85
7202 CA Zutphen
the Netherlands
E-mail:
info@vanzijtveldconsulting.com
Van Zijtveld Consulting, started in 2009 as a small independent engineering and consultancy company, specializing in supporting and training users in the mechanical and process market who work with Autodesk software. In the meantime, we bring over 30+ years of experience in different phases of designing installations. Planning, design, production, implementation, integration and support is in our blood.